525 research outputs found

    Voltage sensitivity of NMDA-receptor mediated postsynaptic currents.

    Get PDF
    Patch-clamp techniques were used to record pharmacologically-isolated N-methyl-D-aspartate-mediated excitatory postsynaptic currents (NMDA-EPSCs) from dentate granule cells in thin rat hippocampal slices. Membrane voltage modulated these EPSCs in two ways. Firstly, depolarization from resting potential enhanced EPSC amplitudes, as expected for a voltage-dependent block by Mg2+ of synaptically activated NMDA receptor channels. Secondly, depolarization markedly prolonged the time course of decay of NMDA-EPSCs in normal and low extracellular Mg2+. Both mechanisms were complementary in establishing a strong dependence between membrane potential and the amount of charge, namely Ca2+, transferred through synaptically activated NMDA receptor channels, that presumably underlies induction of long-term potentiation in the hippocampus

    The in-medium isovector pi N amplitude from low energy pion scattering

    Full text link
    Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous' repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation.

    Get PDF
    Formation of heteromeric complexes of ion channels via co-assembly of different subunit isoforms provides an important mechanism for enhanced channel diversity. We have previously demonstrated co-association of the hyperpolarization activated cyclic-nucleotide gated (HCN1/HCN2) channel isoforms that was regulated by network (seizure) activity in developing hippocampus. However, the mechanisms that underlie this augmented expression of heteromeric complexes have remained unknown. Glycosylation of the HCN channels has been implicated in the stabilization and membrane expression of heteromeric HCN1/HCN2 constructs in heterologous systems. Therefore, we used in vivo and in vitro systems to test the hypothesis that activity modifies HCN1/HCN2 heteromerization in neurons by modulating the glycosylation state of the channel molecules. Seizure-like activity (SA) increased HCN1/HCN2 heteromerization in hippocampus in vivo as well as in hippocampal organotypic slice cultures. This activity increased the abundance of glycosylated HCN1 but not HCN2-channel molecules. In addition, glycosylated HCN1 channels were preferentially co-immunoprecipitated with the HCN2 isoforms. Provoking SA in vitro in the presence of the N-linked glycosylation blocker tunicamycin abrogated the activity-dependent increase of HCN1/HCN2 heteromerization. Thus, hippocampal HCN1 molecules have a significantly higher probability of being glycosylated after SA, and this might promote a stable heteromerization with HCN2

    Runaway Events Dominate the Heavy Tail of Citation Distributions

    Full text link
    Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have disproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418,438 Physics papers published in 1980-1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent γ=3.15\gamma=3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic "runaway" behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance.Comment: 6 pages, 5 Figure

    Socioeconomic conditions and number of pain sites in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women in deprived socioeconomic situations run a high pain risk. Although number of pain sites (NPS) is considered highly relevant in pain assessment, little is known regarding the relationship between socioeconomic conditions and NPS.</p> <p>Methods</p> <p>The study population comprised 653 women; 160 recurrence-free long-term gynecological cancer survivors, and 493 women selected at random from the general population. Demographic characteristics and co-morbidity over the past 12 months were assessed. Socioeconomic conditions were measured by Socioeconomic Condition Index (SCI), comprising education, employment status, income, ability to pay bills, self-perceived health, and satisfaction with number of close friends. Main outcome measure NPS was recorded using a body outline diagram indicating where the respondents had experienced pain during the past week. Chi-square test and forward stepwise logistic regression were applied.</p> <p>Results and Conclusion</p> <p>There were only minor differences in SCI scores between women with 0, 1-2 or 3 NPS. Four or more NPS was associated with younger age, higher BMI and low SCI. After adjustment for age, BMI and co-morbidity, we found a strong association between low SCI scores and four or more NPS, indicating that there is a threshold in the NPS count for when socioeconomic determinants are associated to NPS in women.</p

    Under stochastic dominance Choquet-expected utility and anticipated utility are identical

    Get PDF
    The aim of this paper is to convince the reader that Choquet-expected utility, as initiated by Schmeidler (1982, 1989) for decision making under uncertainty, when formulated for decision making under risk naturally leads to anticipated utility, as initiated by Quiggin/Yaari. Thus the two generalizations of expected utility in fact are one
    • …
    corecore